Spiral method of concretion mining from the bottom waters

Mykhailo Sukach

Kyiv national university of construction and architecture Povitroflotskyy prosp., 31, Kyiv, Ukraine, 03680, e-mail: msukach@ua.fm

Summary. These features occurrence and distribution of deep-sea nodules. A development of the bottom of fossil spiral manner. Scheme is shown floating and complex trajectory carriage bottom of the unit. The basic technological calculation unit that moves around the base module and given recommendations on its use. **Key words:** floating complex, iron-manganese minerals, spiral method of extraction, trajectory of motion,

hose-cable.

Received February 22.2014; accepted March 14.2014

INTRODUCTION

The researchers conducted by oceanologists and marine geologists in the past decade have revealed patterns of occurrence of nodules based on landforms, direction of flow, sediment character, hydro chemical conditions and other factors [15, 17]. Usually deposits are elongated shape with compact placement areas where the concentration of nodules in 2...3 times the average [7, 10, 11]. Nodule deposits are characterized in terms of patchy structure with discrete zones of high placement concentrations [2, 3]. The above makes it necessary to justify the methods of ocean exploration, technology testing, research and industrial mining exploitation [9, 16].

PURPOSE OF WORK

In order to save of resources need to set up a floating complex in such a way that the original data obtained in the pilot mining exploration mining complex would be representative for complex industrial exploitation.

ANALYSIS METHODS OF EXTRACTION

The main element of the exploration mining complex for concretion mining, given the significant depth of development (4...6 km), is a system of concretions raising [1, 4]. Based on the results of tests in natural conditions, conducted by leading foreign companies, to be implemented in the first phase accepted as the most simple pipeline system recovery or airlift pump type [5]. Known technical solution patented by "Lockheed" (USA), which includes craft; descent gear unit pipeline; bottom platform located on its lower end; hose-cable flexible communication and data collection unit [6].

In such a system is extremely difficult to manage the orderly systematic treatment of a loose plot, given the significant difference in the length of the pipeline (6 km) and the width of the working body of the unit fee (a few meters), the masses craft (several hundred thousand tons) and aggregate collection (several tens of tons), the power of influence of natural factors (wind, flow rates of up to 2 m/s) on the pipeline during its movement by floating means (the pressure is several dozens, hundreds of tons) and the aggregate fee (perturbation effects turbid bottom flows on submarine slopes inhibitory effect of flexible communications and ground soil) [8, 13, 14].

Deprived of such deficiencies on shortterm fixation of the lower end of the pipe when lowering the bottom of the bottom platform - bottom base module interacting flexible communication with the with pipeline bottom end of the and shvydkoruhomoyu carriage carrying the tool absorption (analog - cleaner "carrier" containing unit and dust extraction head, interconnected corrugated hose).

SPIRAL WAY NATURE

The proposed technical solution is shown in a design setup is shown in Fig. 1. Bottom base module, which fixes the lower end of the pipeline to the processing area deposits (unit) includes a guided coil connected through hose cable Actuated of carriage, the latter performs a circular motion around the spiral path by bottom base module (Fig. 2).

Efficiency of up moving in spiral trajectories with respect to the bottom of the coil is determined as follows (Fig. 3). Carriage with free automatic hose-cable rewinder hose cableya coil describes involute

Fig. 1. Scheme complex floating:

1 - craft; 2 - descent gear unit; 3 - pipelinetransport artery; 4 - compressor Station (airlift system recovery (ESR) or diesel generator – with pumping system recovery (PSR)); 5 – piping for compressed air at ESR or cable at PSR; 6 – mixer (ESR), submersible pumps (PSR); 7 – bottom base module; 8 – flexible pipe; 9 – donna coil; 10 – hose-cable; 11 – drive carriage circle, defined by equations in polar coordinates in the parametric form:

$$\rho = R_0 \left[1 + (\varphi + l_0 / R_0)^2 \right]^{1/2},$$
(1)

$$\alpha = \varphi - \arctan(\varphi + l_0 / R_0),$$

where: ρ – polar radius of the point of attachment to the carriage hose-cable; α – polar angle (phase) point of attachment; R_0 – radius of the coil; l_0 – length of the initial segment hose-cable, pulled coil; φ – phase separation of the coil hose cable.

Fig. 2. Trajectory of motion of carriage: denotation 1 - 11 as on Fig. 1; 12 - carriage way

It is assumed that the value l_0 depends on the size of the foundations of the bottom coil, which prevents the carriage freely maneuver close to the coil; apparently, $l_0 \ge R_0$. It is also assumed that the width of the carriage is connected with coil radius ratio $b = 2\pi R_0$ to ensure complete overlap of the treated area between the two coils.

Square shape A_0aA_1 (uncultivated space inside the helix) S_0 consists of the area covered by the polar radius ρ from the point A_0 to point A_1 when deploying hose-cable $(S_0A_0aA_1)$, and the area of a triangle $(S_0A_0A_1)$:

CONCLUSIONS

1. A block diagram of practicing deep deposits of ferromanganese nodules sedentary set of fixed at the bottom of the base module and quickly by a movable collector. The latter has a coordinating communication via hose cable with a drive carriage and performs a circular motion around the base module on a spiral trajectory.

2. Productive area of minerals in circular overlapping blocks, where excavation occurs spiral steps. Moving to the next set of traffic control unit and a collector carried by the installed program automatically includes data from sonar beacons.

REFERENCES

- 1. **Bakurov G., 1988.** Ships for deep-water mountain geological researches. Moscow, Shipbuilding, № 3, 12-16.
- 2. Ferromanganese concretions of the central part of the Pacific ocean, **1986.** Under editing I.O. Murdmaa, N.C. Skorniakova. Moscow, Nauka, 344.
- Fouco I., 1982. Modern state of technique of booty of deep-water ferromanganese concretions. ВЦП, № Е- 41418, Moscow, 28.12.83, ist. Fusen, vol. 29, 99-167.
- Paschkin V., Iakovlev P., Cokolov V., 1999. Dredging, refuliring- and gidromechanized works: train aid. Odesa, Astroprint, 432.
- 5. Nurok G.A., 1985. Processes and technology of hydromechanization of open mountain works. Moskov, Nedra, 471.
- 6. **Patent** of the USA № 4232903, 1980.
- 7. Schniukov E., Ziborov A., 2004. Mineral riches of the Black sea. Kyiv, NANU, 279.
- 8. **Sukach M., 2004.** Workflows of deep machines. Kyiv, Naukova dumka, 364.
- Sukach M., 2012. Deep-water technique and technology for development of minerals of the World ocean. Labours VI ISTK "Energia-2012", Simferopol-Alupka, 9.
- Sukach M., 2012. Problems of booty of hard minerals from the bottom of the World ocean. Motrol: kom. Mot. Energ. Roln., OL PAN, vol. 14 (1), 116-122.

- 11. **Sukach M., 2013.** Prospects of development of marine deposits of mineral raw material. Innovations in science are innovations in education: collection of labours. JuRGPU (NPI), Novocherkassk, 285-291.
- Sukach M., 2013. Ukraine's prospects in development of marine mineral deposits. Econtechmod, OL PAN, vol. 2, No 2, 47-50.
- 13. Sukach M., Lysak S., Sosnowski S., 2010. Kinematic analysis of the working process of trencher. TEKA: kom. Mot. Energ. Roln., OL PAN, vol. X, 425-431.
- 14. Sukach M., Lytvynenko I., Bondar D., 2009. System of the automated management and measuring of parameters of technological processes. Motrol: kom. Mot. Energ. Roln., OL PAN, vol. 11B, 186-189.
- 15. **Terms** of education and conformity to law of placing of ferrimanganese concretions of the World ocean, **1987**. Edited O.D. Korsakov. Moskov, Nedra, 259.
- Ziborov A., 2006. To obtain or not obtain the black Sea sapropels in Ukraine. Geology and minerals of the World ocean, vol. 1, 92-99.
- 17. **Ziborov A., 2008**. Prospects and tasks of mastering of marine deposits of mineral raw material. Geology and minerals of the World ocean, vol. 3, 5-18.

СПИРАЛЬНЫЙ СПОСОБ ДОБЫЧИ КОНКРЕЦИЙ СО ДНА АКВАТОРИЙ

Аннотация. Отмечены особенности залегания и распространения глубоководных конкреций. Предложена разработка донных ископаемых спиральным способом. Показана схема плавучего комплекса и траектория движения каретки донного агрегата. Приведены основные технологические расчеты агрегата, движущегося вокруг базового модуля, а также даны рекомендации относительно его применения.

Ключевые слова: плавучий комплекс, железомарганцевые конкреции, спиральный способ добычи, траектория движения, шлангокабель.